【www.ythhrz.com--小升初资讯】
以下是小编整理的小升初英文版的奥数试题(合集6篇),欢迎阅读与收藏。
【篇1】小升初英文版的奥数试题
小升初数学奥数试题
1.有28位小朋友排成一行。从左边开始数第10位是爱华,从右边开始数他是第几位?
2.纽约时间是香港时间减13小时。你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?
3.名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人多少人?
4.大于100的"整数中,被13除后商与余数相同的数有多少个?
5.四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?
6.在1998的约数(或因数)中有两位数,其中最大的是哪个数?
7.英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?
8.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有几个月?
9.将0,1,2,3,4,5,6,7,8,9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同。
□+□□=□□□
问算式中的三位数最大是什么数?
10.有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数。
11.某学校有学生518人,如果男生增加4%,女生减少3人,总人数就增加8人,那么原来男生比女生多几人?
12.陈敏要购物三次,为了使每次都不产生10元以下的找赎,5元、2元、1元的硬币最少总共要带几个?
(硬币只有5元、2元、1元三种。)
13.幼儿园的老师把一些画片分给A,B,C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?
14.两人做一种游戏:轮流报数,报出的数只能是1,2,3,4,5,6,7,8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
【篇2】小升初英文版的奥数试题
小升初面试奥数试题
1、有依次排列的三个数:3,9,8。对任相邻的两个数,都用右边的数减去左边的数,所得的差写在这两个数之间,可产生一个新的数串:3,6,9,-1,8,这称为第一次操作。做第二次操作后也可以产生一个新的数串:3,3,6,3,9,-10,-1,9,8。继续依次操作下去,问从数串3,9,8开始操作第一百零一次之后所产生的那个数串的所有数之和是多少?
2、五位数是某个自然数的平方,则=_____。
3、如图,四边形ABCD中,DE:EF:FC=3:2:1,BG:GH:AH=3:2:1,AD:BC=1:2,已知四边形ABCD的面积等于4,则四边形EFHG的面积等于多少?
4、p、q为质数,m、n为正整数,p=m+n,q=mn,则_______
5、(3月9日走进美妙数学花园)机器人A、B从P出发到Q,将Q处的球搬到P点,A每次搬3个,往返一次需15秒,B每次搬5个,往返一次需25秒,竞赛开始B立即出发,A在B后10秒出发,在竞赛开始后的.420秒内,A领先的时间是_______秒,B领先的时间是______秒.(领先指搬到P点的球多)。
6、(08年3月23日上午重点中学测试卷)一架飞机所带的燃料最多可以用6小时,飞机去时顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200米,这架飞机最多飞出去多少千米就要往回飞?
【篇3】小升初英文版的奥数试题
小升初奥数试题及答案
一年级
1.计算:211×555+445×789+555×789+211×445=______.
2.纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话
三年级
1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?
2.移动一根火柴棍,使得算式成立。
四年级
1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?
2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?
五年级
1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?
2.将各位数字都不大于5的非0自然数,从小到大排列,第个数是多少?
六年级
1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?
2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?
二年级
1.找出图形变化的规律,并画出第四幅图。
解答:
分别按照顺时针方向移动,因此第四幅图是
解答:
2.计算:28+208+2008+8
解答:原式=(20+8)+(200+8)+(2000+8)+(20000+8)
=20+200+2000+20000+8+8+8+8
=22220+32=22252
三年级
1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?
解答:200÷4+1=51(棵)51×2=102(棵)
2.移动一根火柴棍,使得算式成立。
解答:11+3=7+7
四年级
1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?
解答:若妻子都增加5岁,那么四人的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。由条件可以知道,李强的妻子是小莉,王刚的`妻子是小芳。李强比小芳大6岁,王刚比小芳大5岁,所以李强比王刚大1岁,因此李强的年龄为(71+1)÷2=36岁,小莉是36-5=31岁。
2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?
解答:横向与纵向的火柴棍根数一样。4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=0根。
五年级
1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?
解答:15=2+3+4+6,2×3×4×6=144
2.将各位数字都不大于5的非0自然数,从小到大排列,第2010个数是多少?
解答:实际就是将六进制的数从小到大排列。
将2010转化为六进制。(2010)10=(13150)6
第2010个数就是13150。
六年级
1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?
解答:A钟走6个小时(即360分钟)的同时,B钟走了5小时50分钟=350分钟,可知A与B的速度比为36:35。B钟走了7个小时(即420分钟)的同时,C钟走了7小时20分钟=440分钟,可知B与C的速度比为42:44=21:22。
现在C钟共走了11个小时(即660分钟),B钟应该走660÷22×21=630分钟,A钟应该走630÷35×36=648分钟=10小时48分钟,所以A钟应该是10点48分。
2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?
解答:分针走一圈是60分钟,共走了360度,因此分针一分钟走360÷60=6度。时针60分钟只走一个刻度(即30度),一分钟走30÷60=0.5度。
16点整的时候,时针指向“4”的位置,分针指向“12”的位置,相差120度。16分钟里,分针追上时针16×(6-0.5)=88度,夹角还差120-88=32度。
【篇4】小升初英文版的奥数试题
小升初经典奥数试题
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2.2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8.甲、乙两队共同修一条长400米的.公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
【篇5】小升初英文版的奥数试题
关于小升初奥数试题及答案
1.用一个小杯子向空瓶倒水,如果倒5杯水,连瓶共重50克;如果倒进7杯水(水没溢出来),连瓶共重66克,求一杯水和空瓶各重多少克?
2.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9),(2,8,18),(3,12,27)。那么第10个数组内三个数是(,,)。
三年级
1.四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?
2.昨天是11月3日,今天是星期三,那么11月29日是星期几?
四年级
1.50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
2.张彬买了3斤鸭和4斤鸡,共付出9元6角,李杰买了3斤鸡和4斤鸭,付出9元3角,每斤鸡与每斤鸭差多少元?
五年级
1.甲和乙有同样多的信封和同样多的信纸,甲每封信用1张信纸,乙每封信用3张信纸,甲的信封用完还有20张信纸,乙的信纸用完还有20个信封。甲有多少张信纸?多少个信封?
2.某人沿着向上移动的自动扶梯从顶朝下走,走到底用了7分30秒,而他沿同一扶梯从底朝上走到顶只用了1分30秒。设此人上、下扶梯的速度不变,那么此人不走,直接乘该扶梯从底到顶所需多长时间?
六年级
1.计算:
2.已知三个互不相同的质数的积为它们的和的5倍,则它们分别是多少?
二年级
1.用一个小杯子向空瓶倒水,如果倒5杯水,连瓶共重50克;如果倒进7杯水(水没溢出来),连瓶共重66克,求一杯水和空瓶各重多少克?
解答:杯子从加入5杯水,到加7杯水,多加入了2杯水,总重量就增加了66-50=16克,所以可以求出1杯水的重量是16÷2=8(克),由此可以算出5杯水重:5×8=40(克),那么空瓶重:50-40=10(克)
2.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9),(2,8,18),(3,12,27)。那么第10个数组内三个数是(,,)。
解答:先看每一组的第1个数发现规律是:依次加1,由此得出第10组数的第1个是10。再看每一组的第2个数发现规律是:依次加4,或者是4乘几,得出第10组数的第2个是40。最后看每一组的第3个数发现规律是:依次加9,或者是9乘几,得出第10组数第3个是90。得出应该填(10,40,90)。
三年级
1.四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?
解答:因为第一根和第四根只有一头打结,第二根和第三根有两头打结,所以一共要用去6个1厘米。4×8-6=26(厘米)
2.昨天是11月3日,今天是星期三,那么11月29日是星期几?
解答:昨天是星期二,29-3=26(天)。26÷7=3……5,星期二再过5天是星期日,所以11月29日是星期日。
四年级
1.50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的"同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解答:50÷4商12,50÷6商8,50÷12商4。
说明4的倍数有12个,即向后转共12人;6的倍数有8个,即向后转共8人。但是在4的倍数和6的倍数中,有同样的4个人,这4个人先后转了两次,所以要去掉这4个人。那么实际只向后转一次的人数为(12-4)+(8-4)=12人。因此面向老师的人数=50-12=38(人)。
2.张彬买了3斤鸭和4斤鸡,共付出9元6角,李杰买了3斤鸡和4斤鸭,付出9元3角,每斤鸡与每斤鸭差多少元?
解答:这道题可以不用求每斤鸭每斤鸡多少钱。对比两个人买的东西,张彬买了3斤鸭4斤鸡,那么去掉1斤鸡换成1斤鸭后就是李杰买的了,所以用1斤鸭换掉1斤鸡,价钱少了3角钱,所以说明每斤鸡与每斤鸭差3角钱。
五年级
1.甲和乙有同样多的信封和同样多的信纸,甲每封信用1张信纸,乙每封信用3张信纸,甲的信封用完还有20张信纸,乙的信纸用完还有20个信封。甲有多少张信纸?多少个信封?
解答:当每封信用的信封和信纸数都是1时(即甲的使用情况),信封用完还有20张信纸,说明两人的信纸数比信封数多20;当每封信用1个信封3张信纸时,信纸用完还有20个信封,要把信封用完,还得增加信纸20×3=60(张)。这样按照信封用完的情况,两组对应数量如下:
每封信用1张信纸多20张信纸
每封信用3张信纸缺60张信纸
上下对比,每封信多用信纸3-1=2(张),一共多用信纸60+20=80(张),信封的个数是80÷2=40(个),信纸的张数是40+20=60(张)。
2.某人沿着向上移动的自动扶梯从顶朝下走,走到底用了7分30秒,而他沿同一扶梯从底朝上走到顶只用了1分30秒。设此人上、下扶梯的速度不变,那么此人不走,直接乘该扶梯从底到顶所需多长时间?
解答:相当于流水问题,自动扶梯相当于流水,扶梯的速度就是水速,此人从上往下走就是逆“水”而行,从下往上走就是顺“水”而行。那么在同样的距离里,逆水时间是7分30秒=7.5分钟,顺水时间是1分30秒=1.5分钟,即1.5×顺水速度=7.5×逆水速度,那么顺水速度就是逆水速度的5倍。
设水速为“1”,“船速+水速”是“船速-水速”的5倍,那么船速=1.5。
全程=1.5×顺水速度=1.5×(1.5+1)=3.75
所求时间=全程÷水速=3.75÷1=3.75分钟。
六年级
1.计算:
2.已知三个互不相同的质数的积为它们的和的5倍,则它们分别是多少?
解答:乘积是5的倍数,说明其中必定有一个是5。
设另外两个为x和y,即5xy=(5+x+y)×5,xy=5+x+y。
如果x和y全是奇数,那么至少是3和7,显然xy大于5+x+y,说明x和y中必有一个是2。若x=2,则2y=5+2+y,那么y就是7,因此这三个数是2、5、7。
【篇6】小升初英文版的奥数试题
有关小升初英文奥数试题
1、Did you know? In the decimal number system (base 10) ten different digits, 0 to 9, are used to write all the numbers. In the binary number system (base 2) two different digits are used, i.e. 0 and 1.
Which one of the following numbers is not a valid number in the
octal number system (base 8)?
A) 128 B) 127 C) 126 D) 125 E) 124
2、The number of diagonals that can be drawn in a regular polygon with
twenty sides (icosagon) is_____.
3、If a and b are integers, 103=1,1527=3, and then 3796 is equal to_____.
4、Two numbers are in the ratio 2 : 3. When 4 is added to each number the ratio changes to 5 : 7.The sum of the two original numbers is____.
5、The greatest number of Mondays which can occur in 45 consecutive
days is____
6、Saul plays a video game in which he scores 4 for a hit and lost 6 for a miss. After 20 rounds his score is 30. The number of times he has missed is____.
7、Three girls A, B and C run in a 100 m race. When A finishes, B is 10 m
behind A and when B finishes C is 20 m behind B. How far in metres was C from A when A finished?(Lets assume all the athletes run at a constant speed)
8、The areas of the faces of a rectangulabox are 84 cm2 , 70 cm2and 30 cm2.The volume of the box in cm3 is____.
查看更多小升初资讯相关内容,请点击小升初资讯